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ABSTRACT

In order to be use fu l , an approximate solution y of a non l inea r  ~y~;t ~ i it ot

n *
equations 1(x)  0 in H must be close to a solution x of the syst em . Two

*
theorems which can be used ccinputat ionall y to establish the  ~xi~~tt’n c of x and

*obtain bounds for the  error vector y - x are the 1948 resul t  of 1.  V.  j n t o r v j L

and the 1977 interval ana ly t ic  theorem due to R. E. Moore. The two theorom s •t r e

*
compared on the basis of sensi t iv i ty (a b i l i t y  to detect a so lu t ion  x ~~~~~ t o

y) , pier i :;ion (ab i l i ty  to g ive sharp error bounds) , and computat ional  comp l e x  it v

( c o st ) .  A theoret ica l  comparison shows that the Kantorovich theorem has .it  l e t

only a sl ight edge in sensitivity and precision , while Moore ’s theorem r e q ui l e s

fat- less computation to apply, and thus provides the method of ch o i c e.  P h i ’ ;

conclusion is supported by a numerical example , for which ava i la ble U N I V A C  I 1~~I~

1110 sof tware  is used to check the hypotheses of both theorems au t o ma t  ic~i I  1’ ,

given y and f
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Significance and Explanation

Thi s report shows a way to save money in the evaluation of accuracy of approxi—

mate solutions of finite systems of nonlinear algebraic and trancendental equations ,

based on the comparison of an older method for this purpose with a newer one. It is

shown that the two methods are theoret ically about equally ef fective , while the newer
one is cheaper computationally . This conclusion has been verified in practice, using
operational UNIVAC 1108/1110 software.~~~~

In the case of finite linear syst~mts of equations, there is a simp
le theory

based on a finite number of arithmetic operations. For linear systems of moderate

size, the successfulcomputation of a vector y= (y 1,y 2
, ..  . ,y ~~) can imply that it

is close to the actual solution x~ (x *,x* , . . .,x*). For nonlinear systems, the
situation is less well understood in bot~i t~ eory and practice , althoug h many numerical
methods are known which wil l  furnish approximate solutions y . The concern here is
not wi th how y has been found , but rather with the determination of its accuracy as
an approximation to an exact solution x~~.

Often , x* is defined as the limit of an infinite process , so the computed value
y will be contaminated by both truncation and roundoff error . For y to be useful ,
one must be able to assert that it is satisfactorily close to x~~. In order of in-
creasing expense , such assertions can be based on simple (but perhaps misguided) faith
in the output of a computer , usually reliable but not truly rigorous heuristic obser-
vations, or the use of theorems which give guaranteed results. The latter degree of
certainty may be required in certain applications , in addition to its intellectual
necessity, and involves proving the existence of x~ as well as obtaining error
bounds for the vector y - x~~.

Certain criteria are established for theorems which prove existence of solution
vectors and give error bounds. First, they must be computational, so that a computer
program can be written to check out the hypot’ oses of the theorem , given y and the
system of equations.  Thus , the proof of existence and error bounds w i l l  be provided
au tomaticall y ,  or an indi cation of the reason for fa i lu re  of the theorem to hold wil l
be given . A second desirable property is sensitivity; if y is close to a solution ,
then the theorem should detect the existence of x~ rather than give a negat iv e re-
sult. Also wanted is precision, so that the bounds for y — x~ wi l l  be as sharp as
possible , to help avoid wasting money by re f in ing  an alread y s u f f i c i en tl y accur,ite
approx imation . Finally, the theorem should be as simple (cheap) to implement as pos-
sible. The computation of y might be expensive , and as li tt le as necessary shoul d
be added to t h i s .

A metric existence theorem suitable for automation was published by L. V.
Kantorovich in 1948. At MRC , software for implementation of this theorem was announced
in 1%?, and an improved version was released in 1972. In 1977, R. E. Moore published
an interval analytic existence theorem to which this software was readily adaptabl e,

• as automatic differentiation and interval arithmetic were already implemented in it.
A theoretica l comparison of these theorems of different type is achieved by recasting
Mooi ‘s theorem as a metric theorem. It turns out that the Kantorovich theorem has
only a sl ight edge in sensitivity and precision over this restricted version of the
Moor e theorem , but the latter is computationally much simpler and hence preferable.

A numerical exampl e is given to support t h i s  conclusion . This example arose in
e~n unrelated investiqatir,n of numerical solution of nonlinear integral equations of
radiative transfer type , and was rs’t con~ tructed for this purpose. The ~:so of Moore ’ s
theorem qave a 4 to 1 advantage in :~~‘e~ d , and detected the ex is ten ce  of a solut ion
which  the  supposedly more sensitive Kantorov ich theorem tailed to do.

The r e s p o n s i b i l i t y  for  the ’ wordinq and views expressed in t h i s  descri p t i v e ’  summary
l i es wi th MRC, and not with the au~hor of this report .

¶‘~~L.~1 ~~~
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A COMPARISON OF THE EXISTENCE THEOREMS
OF I(ANTOROVICH AND MOORE

L. B. Rail
Mathematics Research Center

University of Wisconsin - Madison
610 Walnut Street

Madison , Wisconsin 53706

ABSTRACT . In order to be useful , an approximate solution y of a nonlinear
n *

system of equations f(x) = 0 in R must be close to a solution x of the

system. Two theorems which can be used computationally to establish the exist-

* *ence of x and obtain bounds for the error vector y — x are the 1948 result

of L. V. Kantorovich and the 1977 interval analytic theorem due to R. E. Moore.

The two theorems are compared on the basis of sensitivity (ability to detect a
*

solution x close to y), precision (ability to give sharp error bounds) , and

computational complexity (cost). A theoretical comparison shows that the

Kantorovich theorem has at best only a slight edge in sensitivity and precision ,

while Moore’s theorem requires far less computation to apply,  and thus provides

the method of choice. This conclusion is supported by a numerical example , for

which available UNIVAC 1108/1110 software is used to check the hypotheses of

both theorems automatically ,  g iven y and f

1. Nonlinear Systems of Equations. A system of n nonlinear algebraic or

transcendental equations in n real unknowns,

~~~ 

. ,x )  = 0

(1.1) ~ ~~~~~~~~~ . . ,x )  = 0

L. f (x1,x2,... ,x )  = 0

may be represented concisely in the real n—dimensional vector space as the

equation

(1.2) f(x) = 0

where f: D c R1
~ + R

!’
~ is a nonlinear operator from a domain D c- R’~ into Rn.

The problem of solving the system (1.1) or the equivalent equation (1.2) is, of

course, to find a 4o&ztLon x = (X
1
,X
2
,...,X )  € D which f maps into the

origin 0 = (0,0,... .0) of

In order to keep the discudsion of this problem within the realm of prac-

tical computation , it will be assumed that the functions f (x
1
,x
2
,... ,x ) ,

i = 1,2,... ,n , comprising the components of f(x) can be written as formulas in

FORTRAN or some similar computer language. As software exists for analytic

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024. 
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differentiation of functions of this type (4,9), it will also be assumed without

further ado that the derivatives f!~ = ~~~~~~ and , if necessary , 
~~jk 

=

~ 
f/ ~ X i ~~X~ can be computed automatically, so that, in particular , the evaluation

of the Jacobian matrix

(1.3) f’(x)
~~ax~

presents no difficulty for x D

2. Existence theorems and error bounds. Actual computation with one of the many

methods for solving systems of equations will yield an app tovJ.ma~te 4o!_u..t..~on y

which will be useful if it can be asserted that y is “close” to a solution x
*

of (1.2). This involves establishing Ci) the ~X~4-tenc~~of x in some region
* *
~ containing y , and (ii) some type of bound for the e.tkolt vc~c,to~t - = x - y

or its components.

In the case of linear systems Ax = b, verification of existence rests

on a finite number of ariti.metic operations. For linear systems of reasonable

size, errors in computed approximate solutions result only from rounding , and

successful execution of a carefully written program can insure the existence of
*

x and provide usable error estimates (2). However, in the nonlinear case, such
*

assurance of existence may be lacking. Furthermore, even if known to exist, x

may be defined only as the limit of an infinite process, in which case y will
*differ from x due to truncation as well as roundoff error.

*
Some comnon criteria for accepting y as a good approximation to x are

(i) the M4~dUaL
(2.1) r = f(y)

is small , or (ii) the CO4k~ctLon

(2.2) = ,~(k+l) — 
(k) 

(k)
is small when calculating x as the limit of a sequence {x }, in which case

one takes 
~ ~

(k+1) 
Either of these can fail for nonlinear f in R . For

example, if f(x) = e
X , then the residual r can be made arbitrarily small, but

* * (k+l)x does not exist such that f(x ) = 0 . Similarly, an iteration process x =

(k) *$(x ) can stall far from x • To see this, apply Newton ’s method to (1.2) with

f(x) = ~
m and ~

C0) 
= 1. The correction can be made as small as desired by

(1)
taking m sufficiently large; the value obtained for y = x will be close to

*
1 and thus not a good approximation to x — 0

It follows that there is a need for compu-ta24onal existence theorems such
that given y and f , their hypotheses can be checked by a computer program ,
and error bounds obtained if existence is verified. Other desirable properties

—2—
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for such theorems are:

(i) Sensitivity . The reg ion ~ in which the theorem can detect t h e

existence of a solution x of equation (1.2) is as larg e as t ss s i l’l e .
*

( i i ) Precision . The region ~ in which x is ~iuarantc’ed to exist
*

does not  extend f a r  beyond x , so that the error bounds ol’t .n’ied are as

as possible’.

(iii) Simplicity . The additional computation required to guarantee exist -

• enre and obtain error bounds should be as Inexpensive as possible.

To a cer t a in  exten t , sensit  i v i ty  and precis ion are inccmtpat it’le , at least in
• *

a single theorem. A sensitive theorem might establish t’x j~~ t enc~~ of x in a

large req ion , hut not yield usable error bounds. A e’Su i t  requ it inq highly p1 e—

cisc approx imat e’ so lut ions , on the of her hand , migh t  f a i l  to det eot a solut  ion
*x which is ose enough to make t he’ accuracy of y sat istactory tot t he’ in-

tended purlx)se. Consequent ly , scntie c~ npr~~ti se between sen sit iv i t  y and pt .’~’ i si on

must b~’ struck. ot course , a computational strategy can be devised in which .i

Son s i t  ive theorem is used o scout a large r~~ Ion fot  suit able i nit i a) approx lisa —

t ions , which are th.n ref ine’d until a pt-cc i se t- heorem guarant ,‘e:~ suit i ci e’n t

ccii: toy ( 13

The L’nrpose of t h i s  1’ap~’~ is to c~*n~~ re two comput at ion.il ~x i st o u c t ’ t heot e’m

fo r  which ~N I V~ C 1108 / 11)0 sof tware  is  operational , on th~ has is of Se’S:; it  i V i t  
~

t’r.’~’ision , and simpl ic i ty.

• rlu’ t heorcen s of Kant orovich and Moot-c. Theorems which can he’ imp )  ement  ed can —

putat ional ly t o oH .t in vet -  if  iabl e’ send it ions f o r  ex i st ence’ of so) ut ion s as w~’ I t  a

ci t ot - bound :; include the we 1 1 —known re ’sti  1 t on the convcrq ens,’ • ‘f Newt on met 1i~’.t

di;,’ to 1.. . K . i n t  •‘:~ ‘v i oh F (~) and t he ’ mot e’ recent int:e’rval —anal yt ic theorem ‘t

R. l-~ . ~f oo i ~~’ ( 1  .~1 . Rrie ’ f st atement of th~~ e’ theorems wi 1 now be’ •i i V~~n : ;‘t~ ’~’t s

may be f ound in t he lit etatut c’ In p.u t li’ular a neat pe ;‘o f of t lie I otilt of t ho

Kant ~‘t’ ov i oh t he’orom I’tts ;e ’flt ed here may be’ found in the’ not e by ;~ t t .~ ta 1)41

1 ,‘t II ‘II denote •e not-nt to t  H5 and a 1 so a cons i s t  e’nt mat  i i  x sons t s’i ti~~ fl

I mat t i c c ’:; ; that is ,. II ~xII U MI .11 xfl t ot- alt x tisi squat e’ stat i i se ’s A

of or~h’t n with real elements. The ingred i ents of t he’ Kant ot ov cli t heot cin at r

i ) an t ( I t  ~-‘e ’ (11 t (approximate’ so tnt  ion ) x at  wh i oh t he’ .~ ac ‘1’ c an mat i

f (X ~~
°

~~ is  invert ible ’ , w i t h

(1 .1) U I f ’ (x~
°1fl 1II H~ ,

and ( i t )  a I i  I’s~’l: j t  ~ ~‘oi~st ant  for f ‘ , t ’ °i that

(I ..’) ( I f ’  Cu )  — f ‘ ( v ) U  • &Hu—t ’ II  , n ,v ~

— -rn—---— . ~~~~~~~~~~~~~~~~~~~~~~ ~~—--~~~ --- -- ~~~~
- - -
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where l~2 is a sufficiently large region containing ~~~~~~ (The meaning of

“sufficiently large” will be made precise below.) From C i ) , the Newton poôi~t

(3.3) — ~~~ —

is uniquely defined , and one can find a constant such that

(3.4) Ilx~~ — x (0)fl 
~

Theorem 3.1 (Kantorovich) . If

(3 .5)  h0 — R 0 K f l 0 <~~~~,

and U(x~~~,p
0
) — (x :~ x_x (0)ii ~ ~) for

1 - v’ 1—2h~
(3.6) p — 

h0 o
* — (0)

then there exists a solution x e U (x ,p0) of equation (1.2).

The conclusion of this theorem provides a guarantee of the existence of a
*

solution x and also the error bound

(3.7) iic~ — ~
(0)

,i <

for x~~~ as an approximate solution of equat ion (1.2) . Using the Newton point

instead of x C0) as the appr oximate solut ion , one can obtain the sharper

error bound

• (1) 1—h
0- 

c’l— 2h
(3.8) lix —x ii <

as shown by Gregg and Tapia (31 . In practic:, one may take ~ — ii(~~°~ ~~~~~ as

if K is the Lipschitz constant for this reg ion , then Ü (x
(0)

,p
0
) c U(x~

01’ ,2~ 0
)

if and only if h
0 

‘~

Moore ’s theorem is based on the concepts of interval analysis (111 . Given

vectors a — (a1,a2,... ,a )  and b — (b 1,b2 ... ,b )  in Rn with a
i 

< b
i

i — 1,2 ,... ,n , the 4nteAvat X — (a ,bl in R~ is def ined to be

(3.9) X — (a ,bl — {xta~ < x
i 

< b~ . i — 1,2 ,... ,n}.

The i.n.tej tva.t ex n.ôLo~t G of a continuous function g :D c R
5 

-‘ R~ may be con-

structed on intervals X c D in the following way : For g (x) — (g
1
(x) , g

2
(x),...,

g (x) ), take

(3.10) c~ — mm g~ (u) , d~ — max g
1
Cv) , i —

U X  V X

and define G(X) — (c,d). It follows that GCX ) -‘ (g(x) :xcX} — g (X) ; however ,

G (X) may also contain vectors which are not of the form g(x) for some x X

—4-
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The recipe for Moore ’s theorem (12] calls for an initial point y , an

interval X containing y , and a nonsingular real matrix Y . These dli’ used

to form the K~ztx~ztjk titan onina..tAon

(3.11) K(X) = y — Yf(y) + (I—YF’(X )}(X—y )

of the interval X , where I is the identity matrix , arid F’ denot c~ t h e  titerval

extension of the derivative V of f

Theorem 3.2 (Moore). If

(3.12) K(x) c X
*

then there exists a solution x • K (X) of equation ( 1 .2) .

This theorem also provides error bounds in addition to a guarantee is  he

existence of a solution . Setting K (X) = [c ,d ] ,  one obtains the coznpoi:u;ttwLe

error bounds

(3.13) ~~~~~ < max { jy
~

_c
~ I~~Id~

_y
1I} , i l ,2,. . . , n ,

for y as an approximate solution of equation (1.2). Error bounds a;1aJix~(ss to

(3.8) may be obtained by setting

(3.14) w = y—Yf (y), (s ,t) = t I — Y F ’ ( X ) } ( X — y )

from which

(3.15) x .—w . I  < t.—s ., i = 1,2 , . . ., n ,
1 1 — 1  1

as (x—w) t [s ,t]

Although different in appearance , Theorems 3.1 and 3.2 have a C C - i - ” - , kgrourtd .

Def ine  the Neiuton opeita-tok ~‘ by

(3.16) 4,(x) = x — If’ (x))~~’f (x)

and the Newton 4equence {x~~~ by

k+1 k(3.17) x = ~(x ) ,  k = 0,1,2 

Theorem 3.1 gives sufficient conditions for the convergence of the Ni’~- l - - , 1 lCf lCt’
(0) *starting frost x to a solution x of equation (1.2). The Krawc: . - ‘ oritor

K defined by (3.11) stems from an adaptation of the Newton operator (1 .~~ and

the iteration process (3.17) to interval computation (81 . Under the ~~~ ~~- ses

of Theorem 3.2, the operator i4i defined by
(3.18) tji(x) = x - Y f (x)

will have a fixed point x~ K(X), which is also a solution of equat i i  1 .~~)

by the invertibility of Y (121.

—5—



4. Moore’s theorem in R~ . Because of the different character of Theorems 3.1

and 3.2, it will be necessary to make some special assumptions in order to compare

them. As the metric topology for intervals (11, pp. 15—24] is closely related to

the norm

(4.1) il xil • max {1x 1 1}
Ci)

for R~ , the method of comparison willbe toreformulate Moore ’s theorem as a (less

general) metric theorem, which will then be compared to the Kantorovich theorem in

The following concepts will be needed .

The closed ball U ( y , p )  in R~ with center y and rad ius p is a special

type of interval , namely

(4.2) U ( y , p )  = {x:Ux—yil < p1 — (y—pe ,y+pel

where e — (l , l , . .. , l) .  In particular, the Clo4ed un.Lt baLt U(0 ,1) in R~ is

simply the interval (-e ,e l .  The rnag~tiJiide of the scalar interval [ct ,B1 in H

is defined to be

(4.3) I (cz ,~ ) max( I c i l , I~I I

Similar ly ,  for an interval X = (a ,bl j fl R
n

(4.4) ! x I  = max {max(Ia .I ,Ib .I)) = max {Iiali ,il bil } — max iI xIt
Ci) 1 1 x~~X

in t erms of the norm (4.1) . The u.uctth of X is

(4 .5 )  w ( X )  = max {(b , — a . ) ’} — (l b—aU ,
( j, ) 1 1

and the m.ütp o.~nt of x is m ( X )  = ~-(a+b) . The matrix norm corresponding to (4.1)

for matrices A — (a .j ) is

(4.6) h All • max 
~ k.

Ci) j—l ii

It follows from this and (4 .4 )  that

(4.7) Ih Afl — A(—e ,e]~~.

For a matrix M — ((cz~~.8~~l) with interval components, one has

(4.8) M l = max 
~ 

l ( c $ . . ,
~i.1I = max (hAil ) = IMI—e ,e l I .

Ci) j—l ~

In Theorem 3.2 , suppose that B hlYhl , rt > hly—wil , where w — y — Y f (y ) , and

(4.9) X — (y — pe, y + pel — Ü (y , p ) .

The Krawczy k transformation of X is thus

(4.10) K(X ) = w + ~‘{i 
— YF ’(X)I [—e ,e] .

Also, suppose that

uC ) “ Y~~ 
— F ’( X  )

(4.11) 
p 

— p

-6-
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I
Lei~ %a 4.1. If B~~(p )  < 1 , then K ( X ) c X for

n
(4.12) p 

— — Bw ( p )

Proof: As l Y  are real matrices, one may write

(4.13) ( I — Y F ’ ( x )  I = Y f Y  
1
—F ’ Cx ) )

For v e p(I—YF’ (X))[—e ,e], (w+v) ~ K(X ) , and

( 4.14) I ly — (w+v) h I < H y—wll + hl vIl < ri + Bpw (p)

so that Il y  - (w+v) Il < p if (4 .12) holds , and thus (w+v) € X . QED.

An interval of the form [-a ,a] is said to be 4ynP n eLk~~ . As a linear

transformation of a symmetric interval is syninetric , one has

(4.15) Ci — YF ’ C X )  }(—e ,e] = (—c ,cl

and thus K(X ) = (w—pc , w+pcj . The next step in the comparison of Theorems 3.1

and 3.2 will be to use the Lipschitz continuity of f’ to obtain a scalar majorant

function for w(p). If f’ is Lipschitz continuous on an interval X (with

Lipschitz constant K ) , then each component V .  of f ’  is also Lipschitz

continuous on X , that is

(4.16) IV .  Cu) — f !  . Cv) I < A .  . l l u—v ll , u,v e X
1J 1] — 13

Define

(4 . 17)  A = max ~ A. .
Ci) j = 1 ~~

It follows that A will be a Lipschitz constant for f ’  on X , so that one may

assume K < A

Lenlna 4 . 2 .  If y € X , then
(4.18) lf ’ (y ) — F ’ C X )  I .~~. x Iy— x~.

Proof: By (3.10) , (4 .4 ) , and (4 .16) ,

(4.19) If~
(
~

) — F~~. (X) I < A .. max {ll y—xlj } = A y—x~
x€X

i ,j ].,2,...,n. Inequality (4.18) now follows from (4.8) , (4.16) , and (4.17) . QED.

The choice Y = t f ’ ( y ) ] 1 now gives a metric theorem which allows direct com-

parison of Theorems 3.1 and 3.2.

Theorem 4.1. If

(4.20) h = BA~ <

then K (X ) c X for p such that
p p

1 — /1—4h 1 + v’1—4h(4.21) 
2h ~ 2h

and x c x .p

_____ 

—7—
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Proof: As y — utCX ) is the midpoint of x~, I~-x~I — 5 w(X ) - ~ , and

one may take

(4.22) ~~~ Ap

by (4.11) and (4.18). Thus, if h , then inequality (4.12) may be solved to

give (4.21). and the conclusion follows from Lemna 4.1. QED .

In order to use Theorem 4.1 to compare the theorems of Kantorovich and Moore ,

it is natural  to take y - ~~
b0)

, y , where

(4 .23 )  Y 0 
— (f’Cx ~

°1 )1
1

so that w B B
~~

, ‘ — . Thus for

(4 . 2 4 )  ~
(0) 

— r~~
C0 ) 

- 2n0
e ,x~°~ + 2~0

e] — ~I ,

one has

(4.25 ) ~(X~°~) + 2fl
0
(I_Y

0
F1 (X(0)))(_e ,e] .

Corollary 4.1. Under the hypotheses of Theorem 3.1, if

(4.26)

then X (X~°~) s’

Proof : This follows immediately from Theorem 4.1, as h0 
(\/~)h. QEO.

Remark 4.1. As (4.26) requires that h
0 

.. even if K \, Corollary 4.1
provides a comparison of Theorem 3.1 with Theorem 3.2 which is unfavorable to the

latter. Furthermore, this cannot be improved in general , as the following example
2 2 (0)shows. In R , take f(x) — x — u for 0 ‘~ ,- .- 1 and x — 1. Thls gives

Cl) 1 2 1 2(4.27) - -. = ~ C1 + ~ ‘ 
— — 

~

f rom which (c 2 2 - ~2 ] As B
0 — 4 and i A — 2 , it follows that

(4.28) h
0 

— h = 4C1 — 
2 ) 

*and Theorem 3.1 guarantees the existence of the solution x — r of f Cx ) — 0 in

x
(0) 

for 0 < c < 1. On the other hand , direct computation with (4.25) yields

(4.29) K(X~°~) — 4 + 
5 2  

— 
4 3 

— 
3 2  

+

and it is easy to verify that K ( X ~
01) c if and only if ! ~2 1, that is ,

0 < h
0

<~~~~.

A result more favorable to Moore ’s theorem may be obtained by making d i f f e r e n t

choices of y,  Y , and x than those above. If the hypotheses of Theorem 3 .1 are

satisfied , then the Newton sequence {x~~~ I generated by (3.17) is well defined ,

as are the sequences of real numbers {r,.1~}, (Bk
), (hk

} satisfying the relationshi~~

—8—
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1 
h
k
)
k (k+ .)  (

~~
. 1)

[ 
1’k~ 1 

- ‘  
l h k 

~ l ix - x U ,

( 4 .  ‘
~~ = - -

~~~ l i l t ’  ~~~~~~~~~ ~~
k-t I l h

k

~ =~- ‘ i ‘—
~

--——
~~ 

= 13 pt... k+ I -‘ l h
k 

k+1 k+ 1

k 0 , 1 , ‘ , .. .  [ t i ; l _ , J’~’
. I ‘~~l 113 ] . I t  i t OO’ t \‘ t~~! i t  V t ~~ t t  .~ I :

.11: 1 t h ;:

(k) (k) (k) (0)( 4 .  i i )  X = (x — X + ‘.- X

Theor in 4. ‘ . If the hvh ot host -: ; of Theorem 1~ 1 hold w i t  ~ .

( 4 .  l~~) h 1

t h o r :  t h er e  e x i o t  ~ - a ~ oo it iv~’ int t ’q t ’r k such t h at  t o~ y , y

‘ C x  
(k ~~) ]  -1 

, ‘r h i s  K(X 
(k)

) ~(k)

Proof : I f  ( 4 .  .~) ho lds , t him the numbers h
k 

dt~~- x , ‘j  ; . t  r .~~ i ~1 l v  ti h

In tict , the recurrence relations (4. 30) can be solved [3) t o  q i vo

( 4 .  H)  h = - — — —
~~~~~~~~~~~~~ , k = 0 , 1, , . . .k

1+0~I-)
where

1 — ~‘l — 2 h
(4. ~~ = 

1 + ~T~~h

and ;
.~ 1 t f  ( 4 .  1 )  holds. Thus , a pos it ~ Vt integer k will ,-x : t  it

(4. .t~~ ) h
k — 4\

and h~ conclu: ; jot; will follow f rc~n Theor€in 4 .1 , as h C \ ‘~~ I: .

Ri~~ark 4.2. The condit jon (4. 32) imp lies quad ra t i c  COi iVt ’ t i t ’ O ,  ‘ NOWt Ott

(k) * * (o)sequence Cx 1 o x ; furthermore , x will be unique in N .i;;~i ‘ ‘~~~~~ . - t ’ o
* — lof f in the ;;t’not that [f ‘ (x ) I will exist [161 . The cast’ 1; = -

‘ 
‘

It -

borderline situat ion , whi ch corresponds to  l inear  convt-rqen l - i - ot ’ t i o -  N t  ~: - ‘:

with ratio [ 61  . Consequent lv , i f  rap id converq once of t h~’ N e wt  or: o t o

the approximate solution y has been observed computat  iot -t a l l y ,  t h i n i t  ~:

that the value of h
0 

corresponding to ~~
(0)  

= y sati:.i it’s (4. ’~- )  iu rm ~- i , ; t ~~’l y so

tha t  eit her Theorem 3 .1 or 3 .2 is app l ic i b l e.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _  _ _ _ _ _ _ _ _ _
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H 5. Precision and sensitivity to simple zeros . On the assumption that

satisfies (4.26) , it follows from Thereom 3.1 thEt for y =

* 
1 — 11—2h

0(5.1) hly — x II h ~O =

0
and , similarly, Theorem 4.1 gives, by (4.20)

* 
1 —

(5.2) fly — x II 2 C A/K) h0 ~O =

If 0 < h
0 

< K/4A , then it is evident that

~~~~ 
p
0 

< p ,

so that the Kantorovich theorem is of greater precision than the metric version

of Moore’s theorem. However,
p

(5.4) liiu —~~~= 1
h0- *0  ~

so that the difference may be inconsequential for h sufficiently small.
* 

0
To compare sensitivity , suppose that x is a simple zero of f , and

* * —1
(5.5) B > ii ( f ’ C x  ) ]  II.

*
Given Lipschitz constants ec, ). in a sufficiently large region ~I containing x

one may take

1 * (0) *
- ; 1 — B KII X —x II * (0) *C5.6) h0 = * (0) * 2 

B KIIX —x II
(1—B Khl X —x II)

(0) * *in Theorem 3.1, provided that lix -x II < 1/B K (16] . From (5.6) ,

(0) * 1 
/l4-2h

0(5.7) lx — x II < 1 — 1+2h = aCh 0
)

B K  0
*which may be used as a measure of sensitivity. From Theorem 3.1, x v11 be

detected if

(0) * 1(5.8) lix — x II
(0) — * 1

that is, if x € u (x ,a( ) ) ,  while Corollary 4.1 requires that

- (
~ ) * ( K(5.9) lI~ — x II < a

Thus, as

(1
(5.10) a 

4
) 

2 
~
- 3 ,/~ —

1 = 
3 ~ 2—i/~~ 

— 0.6265...
a (~ )

—10-
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the best radius of detect ion of x that can be quarant t - ’~~i i o t hi’ i n t ’l  i i ’ v o r  r ; on

of Moor e’s theorem is about 62.5% of the cor tosi ’t ind inq  va lue  t 02  t he Ka n t orev ich

theorem. The exam ple of Remark 4.1 can also be used to show that t h i s  i ’autn ot be
( 0) * 1improved in general. As in Theorem 4. 2~~ however , it lix — x U ~- o (s-) t hen

h
0 

‘- ~~
- , and there will exist .i p o sit iv e  m t  ~~~~~~ k such that

(k) *
(5.11) lix — x Ii ii ( j~

for x belonging to the  Newton sequence Cx 1 , and M o itr i ’  ‘ii t heorem with
(k) 

• Ut) —l (k) (k) - Ut)y x , Y = Y ,_ [f C x ) 1 , X — [x — ~~~~~~~~ x + .‘r~~’] X w i l l  d o—
* 

‘% “ (k) ~~~* 1tect x . The number c-f iterations required f t  ‘*it am l ix  — x Ii e(~-) 1:;

shown in Table 5.1 for various values of h , .

h0 k

0.41421 1

0.47648 2

0.49397

0.49848 4

0.49~62 ~~

0.49990 6

0.49997 7

0. 49999 8

Table 5. 1.

It oi-at our; Required l i t  En s u t  0 h )~

c i

~~~~~~~~ ~~~~~~~~ 
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6. Computational complexity. The computer program 191 for the Implementation of

the Kantorovich theorem has been adapted to apply Moore’s theorem for the choicer :

of y, Y , and X indicated for Corollary 4.1, and , as an additional option , for

the choice

(6.1) Y =

recc*iinended by Moore and Jones (13] . This program provides an experimental as well

as a theoret ical basis for the comparison of the computational complexi ty  of Theorem

3. 1 wi th  Theorem 3.2.

To make effect ive use of either theorem, software is needed for automatic dif-
ferentiation ( 7 J  and Implementation of interval computation for ar i thmetic  operations

and function s ordinarily encountered in FOR’T’RAN expressions (171 . In addition , the

program for the Kantorovich theorem requires software for interval matrix inversion
(5; 11, pp. 32— 39 1 as part of the painstaking calculations required to guarantee

that upper bounds ~~~~~~ are obtained for the quantities indicated in (3 .1) , ( 1 . 2 ) ,

and (3 .4 )  as results of inexact computations with machine numbers.

As the endpoints of intervals employed in actual ca lcu lat ions mu st be machine

numbers, directed rounding is used after each operation to preserve the inclusion

relationship. For this and other reasons [11], instead of the exact interval exten-

sion G of a continuous function g , a Compwt&~d -t~n~~on G is obtained , which

has the property that G C X )  G ( X )  for all X . Thus , I G C x )  I G C X )  I and

~ (X ) X implies G ( X )  X , so that rigorous conclusions can be drawn on the basin
of interval calculations with computed extensions. In what follows , it will  be
conven ien t to iden t i f y a machine (or real) number z with the dc~J cn cJtaJ Q £ntc.’tva.C
z = (z ,z J .

The calculat ion of B
0
,~ 0 for the Kantorovich theorem are fa i r ly st raight-

forward applications of interval analysis. The Lipschitz constant k , however, will

be obtained from a bound for the second derivative
2
~1 f Cx)

(6.2) f”(x) 
~~

which will be called the H !44- gn of f . For a rea l bilinear operator ~
in 8:,

(6.3) IIQII — max IlQxii .: max 
~

‘ I~jj~I ~i (Q)
Ilxfl=l Ci ) j=l k 1

with a similar expression for I Q I if the elements of Q are intervals. Thus,

—12—
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a machine number ~ such that

(6 .4 )  . u (F ” ( X ) )  = max I I F i. k (x) I~Ci)  j = 1 k=l

where F” is the computed extension of f” , wil l  be a Lipschifz  coiis taiil fi )L

f ’  on X , as

( 6 . 5 )  K > max h i f ” ( x ) i I .
x€X

The essential interval operation s to impl ement the Kantorovich t hc’oii”n will

now be listed , it being assumed that ~~
C0) 

= (x
C0)

,x
(0)
) is an exact mai - h ’ - - t

vector:

Kl. i ( x ~
01 ) is evaluated .

K2 . The interval Jacobian F ’ ( x ~
0
~ ) is calculated.

1(3. ) (F ’(X~
°
~ ) ) ’ is obtained by interval matrix inversion ~~

F’(x~~~).

1(4. B~~> J Y
0~ 

> ii [f’Cx
0

) ] 1
i) is obtained by interval arithmetic , ‘ - : - r~~ (4.8).

= x~°~ 
— ~0~~~~

(0
~~ is computed using interval arithmetic , :~~~- h ,

W for the exact Newton point.

1(6. n0 > Ix C0) — w i  > Iix~~
1 

— 
~~~~~~~ is obtained from (4.4) by (‘it. ‘-val

arithmetic.

~ x [x~~ 
— 2n

0
e, ~

(0) 
+ 2n

0
e] is constn~cted, using interv.i .c. t ’ljue tic.

K8. F ’ ( X )  is evaluated to obtain
1(9. F ” ( X )  by d i f ferent ia t ion.

1(10. o -‘ ~ CF ” ( X ) )  > max i l f ” ( x ) ii is obtained from (6 .4 )  by in t t - ’~~ - ‘ itline tic .
x~ X

1(11. 
0i n ~~ is calculated , using interval arithmetic.

After  the machine number h0 has been obtained in this way , it i .  c i’-

versus the machine number to see if (3.5) holds to complet e the at  - ‘it- ; en of

Theorem 3.1.

In the case of the Moore theorem, interval  matr ix  inversion is aVe r i,. by

evaluating f Cx (0) ) approximately as a real matr ix , say in double pu -  i n , and

then inverting the result carefully to obtai n a real matrix Y which i H i - inverse

of some ma t r i x .  (A f a i l u re  of matr ix  inversion here or in 1(3 result ; ii it ex it

from the program with an appropriate error indicat ion.) The interval  i- trip ~ 0 ion ;;

r equ ired for Moore ’s theorem with y = ~~~ are:

Ml. F ( ’  is evaluated.

M2 .  — YF (y )  is computed using interval a r i thmet ic ;  one has ~ W

P13. n W I is obtained from (4.4) by interval a r i t h m e t ic .

—13—
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P14. X ‘ lv — 2 -r ~t ’ , y + 2~eJ is constructed by interval arithmetic

MS. F’(X) is evaluated .

P16. K(X) ~ W + 2n1 1 - YF (X))t-v ,el is constructed by interval arithmetic.

These calculations result in the intervals X — (a ,bl, KCX ) (c ,d), where

the components of the vectors a ,b ,c ,d are all machine numbers. The verification

of K ( X )  x thus depends on checkinq the 2n inequal i t ies

(6.6) a. ~- c • , d . .- b . , i — 1 ,2,...
~.

— 1 1 —  i

between machine numbers.

Comparison of the lists of interval operations for the two theorems reveals

that Ml. — 1(1, M2 ‘- K~ (Y is a real matrix , so obtaining Y F ’ ( y )  generally

requires fewer operations than for ~~~ ,(x
(0)) ) ,  M3 — 1(6, M4 1(7, M5 — KR . This

commonality of subroutines made adaption of the original program to the new theorem

very easy. This leaves 1(2, 1(3, 1(4, 1(10, 1(11 for implementation of Theorem Ll

as against M6 and the inversion of a real matrix for automation of Theorem L2.

In particular , 1(3 (interval matrix inversion) is tedious, and 1(9 CHessian eval-

uation) requires ~~
. n2(n+l) differentiations and interval evaluations, while M6

is a simple interval matrix—vector multiplication .

It follows that the applicat ion of Theorem 3.2 is less complex by far than the’
(0) *use of Theorem 3.1. At least for good approximations y — x to x , there is

no significant difference in precision or sensitivity to offset this advantage of

Moore’s theorem.

A comment is in order on the choice (6.1) for Y . For X — Xp
(6.7) Im CF ’Cx )) — F’(X ) I  = ± w(F ’ (X ) )

p p 2 p
and from (4.16) and (4.17),

(6.8) w(F’(X )) < A wCX ) = 2 Ap
p — p

Thus , one may take w ( p )  Ap in Lemma 4.1 , which gives Theorem 4.1 with
(6.9) B ‘ II [ m ( F ’ C X ) ) J 11i , n ‘ h i w—yl l  = hlYfCy ) hl

Here , however , p is chosen first, and (4.21) must hold if h — BX n  ‘-

Computationally , this method differs from the above in that M
3 

and M
4 

are

eliminated, MS follows the choice of X , m C~~’(X )) is then evaluated and

inverted to obtain ‘1 and then Ml , M2 , and M6 with 2fl p complete the

computation. There is thus no essential difference in complexity .

— 14—
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7. A numerical example. An actual comparison of computational efficiency wjs

obtained by applying the computer program (91 , m o d i f i e d  to include the  implementa-

tion of Moore ’s theorem , to the quadratic system
9

(7.1) x . - ax a . .x . — 1 — 0 , i — 1,2,... ,9,
1 i •

=~~ 
x) _)

with

t . Cl— t
2)2w .

(7.2) a~ . — 
4 ~ ti

]

where t ,w . ,  i = 1, 2 , ... ,9, are respectively the nodes and weights of the

Gaussian integration rule of order 17 on the interval 0 < t 1 r io , p . 288 1.

The system (7.1) was constructed as a discrete approximation to the nonlinear

integral equation

(7.3) x(s) — 1 + s x(s) f
1 (1~~~)

2 
x (t)dt , 0 s < 1

which is a case of the H-equation of Chandrasekhar El . p. 105). The value of

a considered was a = 0.7, and the initial approximation y = ~~
(0) 

= e gave

(7.4) X = [0.3405052e , l.6594949e1 .

(Directed rounding is used in the conversion of intervals from binary to decimal;

hence , the decimal interval X given by (7 .4) contains the binary interval stored

in the computer.)

The program for the Kantorovich theorem computed

(7 .5) h0 = 0.700800 , 

* * * *
and thus  f a i l e d  to detect the existence of a solution x (x 1, x 2 , . . . , x

9
) of

(7 .1) in X.  A total  of 21.4652 tINIVAC 1110 t ime u n i t s  were required , of which

4. 7416 were expended for interval m a t r i x  inversion ( 1( 3  and 1(4) , and 12.1394 were

required for the evaluat ion of the Hessian (1(9 and 1(10) .

The program for the Moore theorem, on the other hand , required oniy a total of

~.4 l2o  time uni t s , and gave K ( ~~) x , thu s guaranteeing the exis tence of a solu-
* — —tion x K(X) . The components of K (X) = lc ,dl are given in Table 7 .1.

In thi s simple example , the value of h0 has not been overestimated bad ly ,

.ts the Hessian is constant , and al l  its nonzero elements hav e the same sign. For

bi l inear  operators Q of this type , ti (Q) IIQH . Thus , the program ba sed on

Moor e ’ s theorem provides more information in this case, as well as showing the

expected decrease in execution time . For systems w i t h  nonconstant Hessians , the

advantage in speed of Theorem 3 .2  should be even greater than the 4 to 1 advantage

observed here. In addition , the flexibility of being able to use .~ntervals other

—15—
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i c~ d
i

1 1.0042228 1.0606792

2 1.0135268 1.1943671

3 1.0223478 1.3211143

4 1.0293528 1.4217681

5 1.0344997 1.4957230

6 1.0381216 1.5477668

7 1.0405689 1.5829316

8 1.0421079 1,6050443

9 1.0429109 1.6165838

Table 7.1. The Interval X(X) — tc ,d).

than balls and the componentwise error bounds furnished by intervals may be

of significant advantage in practical computation.

The Author wishes to acknowledge the assistance of Julia H. Gray ,

S. T. Jones, and C. T . Kelley with this example, which arose in an investi-

gation completely unrelated to the subject of this paper.
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In order to be useful, an approximate solution y of a nonlinear system of

equations f(x) = 0 in ~ must be close to a solution x~ of the system. Twt
theorems which can be used cc*nputationally to establish the existence of x* ~~
)btain bounds for the error vector y-x~ are the 1948 result of L.V. Kantorovich
and the 1977 interval analytic theorem due to R.E. Moore . The two theorems are
compared on the basis of sensitivity (ability to detect a solution x~ close to
y), precision (ability to give sharp error bounds), and co*npntatinnal complexity
(cost). A theoretical comparison shows that the Kantorovich theorem has at best
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Abstract (continued)

only a slight edge in sensitivity and precision , while Moore ’s theorem requires
far less computation to apply, and thus provides the method of choice. This
conclusion is supported by a numerical example, for which available UN IVAC 1108/
1110 software is used to check the hypotheses of both theorems automatically,
given y and f .  
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